Graph Regularized Nonnegative Matrix Factorization with Sparse Coding

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EquiNMF: Graph Regularized Multiview Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) methods have proved to be powerful across a wide range of real-world clustering applications. Integrating multiple types of measurements for the same objects/subjects allows us to gain a deeper understanding of the data and refine the clustering. We have developed a novel Graph-reguarized multiview NMF-based method for data integration called EquiNMF. The ...

متن کامل

Sparse Deep Nonnegative Matrix Factorization

Nonnegative matrix factorization is a powerful technique to realize dimension reduction and pattern recognition through single-layer data representation learning. Deep learning, however, with its carefully designed hierarchical structure, is able to combine hidden features to form more representative features for pattern recognition. In this paper, we proposed sparse deep nonnegative matrix fac...

متن کامل

Extended Sparse Nonnegative Matrix Factorization

In sparse nonnegative component analysis (sparse NMF) a given dataset is decomposed into a mixing matrix and a feature data set, which are both nonnegative and fulfill certain sparsity constraints. In this paper, we extend the sparse NMF algorithm to allow for varying sparsity in each feature and discuss the uniqueness of an involved projection step. Furthermore, the eligibility of the extended...

متن کامل

Local Learning Regularized Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) has been widely used in machine learning and data mining. It aims to find two nonnegative matrices whose product can well approximate the nonnegative data matrix, which naturally lead to parts-based representation. In this paper, we present a local learning regularized nonnegative matrix factorization (LLNMF) for clustering. It imposes an additional constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2015

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2015/239589